Mark scheme - Uses of Mangetism

Question		Answer/Indicative content	Marks	Guidance
1		A	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
		Total	1	
2		C	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	
		Total	1	
3		B	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
		Total	1	
4	a	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed explanation about how a transformer works. AND A quantitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Simple explanation of how a transformer works. AND A quantitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages. OR Detailed explanation about how a transformer works. AND A qualitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages.	$\begin{gathered} 6 \\ (\mathrm{AO} 1.1 \times 3) \\ (\mathrm{AO} 3.1 \mathrm{ax} 2) \\ (\mathrm{AO} 3.2 \mathrm{ax} 1) \end{gathered}$	AO1.1 Demonstrates knowledge and understanding of scientific ideas to give an explanation of how a transformer works For example: - Alternating current / ac / voltage / potential difference - (induces) (alternating) pd / current in secondary - Linking different numbers of coils to changing potential differences (or currents) - More secondary coils = bigger output potential difference - Alternating current in primary coil induces alternating magnetic field in the iron core - Alternating magnetic field in the iron core induces alternating potential difference in the secondary coil - An alternating current flows if the output is connected to a circuit - Ratio of potential differences depends on ratio of coils - Step up transformers increase potential difference and have more secondary coils ORA AO3.1a Analyse information and ideas to interpret - quantitative - Correct equation selected from data sheet - Data from table processed

There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

Level 1 (1-2 marks) Simple explanation of how a transformer works.

OR

A quantitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages.

OR

A qualitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages.

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

- For A and C expect secondary pd of 24 V
- For B and D expect secondary pd of 6 V

AO3.1a Analyse information and ideas to interpret - qualitative For example:

- Double the number of secondary coils (compared to primary) and the output potential difference is doubled (compared to input)
- Halve the number of secondary coils (compared to primary) and the output potential difference is halved (compared to input)
- In transformer A the number of coils increases by 100% and the voltage increases by almost 100\%/AW
- In transformer B the number of coils decreases by 50% and the voltage decreases by $50 \% / \mathrm{AW}$
- In transformer C the number of coils increases by 100% and the voltage increases by almost 100\%/AW
- In transformer D the number of coils decreases by 50% and the voltage decreases by $50 \% /$ AW

AO3.2a Analyses information and ideas to make judgements

- Data supports the expected output voltages
- Energy losses in A and C
- B and D are efficient

ALLOW voltage for potential difference and vice versa

Examiner's Comments

This question gave candidates the opportunity to apply their knowledge and understanding of the operational of a transformer and to demonstrate that they are able to use the equation linking number of turns and potential difference given on the data sheet. The question is open ended so that candidates have the opportunity of demonstrating their knowledge as well as having the opportunity to structure their answers logically.

The question required candidates to explain the operation of the transformer. Most

					important that candidates stated a relevant device as opposed to an appliance such as a phone.
			Total	9	
5			C V	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	Examiner's Comments About two thirds of candidates gave the correct answer C.
			Total	1	
6			A $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	Examiner's Comments About 40% of the candidature gave the right answer A. The common incorrect response was usually ' D '.
			Total	1	
7			D \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	Examiner's Comments This calculation was answered successfully by about three quarters of the candidates stating D.
			Total	1	
8	a	i	Fleming's left hand rule (1)	1	ALLOW left hand rule / motor rule
		ii	Reference to B, I, L are the largest in the table (1) Some calculation to show the use of $\mathrm{F}=$ BIL e.g. one mark point for four correct calculations: A: 0.125 N B: 0.225 N C: 0.225 N D: 1.250 N (1)	2	If no calculations are made pupils can only receive 1 mark
	b	i	Wind two coils of wire around an iron core / AW (1) Secondary coil has twice / double the number of primary turns / ORA (2) Connect primary coil to an a.c. supply (1)	4	ALLOW secondary coil has more turns than the primary coil / ORA (1)
		ii	High voltages can be produced / AW (1) Any 1 from: Insulate the secondary coil (1) Use very low voltages on the primary coil (1) Keep primary coil voltages low / AW (1)	2	ALLOW below 6 V
	C		Microphones convert pressure variations in sound waves (1) into variations in current / voltage in electrical circuits / AW (1)	2	

